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Studies on coal genesis and invest igat ions of the chemical constitution of 
coal indicate tha t  bituminous coal has a macromolecular s t ructure  i n  which a large 
number of basic units of condensed r ing s t ructures  are connected by a l ipha t ic  and 
heteroatom bridges. 
fied as  constituents o f  the coal, and several research data suggest the presence 
of hydroaromatic rings. 

Because of the complexity of the coal s t ruc ture ,  i t  i s  very d i f f i c u l t  t o  
present a concise summary of the avai lable  s t ructural  information. 
approaches, which has been used t o  summarize and t o  i l l u s t r a t e  the main chemical 
s t ructural  features  of coal, i s  the construction of "model coal molecules." 
Although many d e t a i l s  of model coal s t ructures  are necessarily qua l i ta t ive  in 
nature and need to be updated as new research data become avai lable ,  the derivation 
and construction of model molecular s t ructures  for  coal serve an important purpose 
because they help the coal researcher t o  summarize and evaluate the consistency of 
experimental data from a s t ructural  viewpoint and to  ident i fy  key areas where more 
research i s  needed. 

An important application of model s t ructures  was reported by van Krevelen ( l ) ,  
who proposed formulae for  the aromatic constituents of coals a t  d i f fe ren t  stages- 
of coal i f icat ion.  More recently, Given ( 2 ) ,  Wiser (?), and Gibson ( 4 )  have proposed 
model molecular s t ructures  for  high-volatile bituminous coals of approximately 
82 t o  83% C content. While there a re  s ign i f icant  differences among these proposed 
s t ructures ,  several of the i r  basic features  are  similar: 
t ive ly  small condensed aromatic ring systems, consisting on the average of two t o  
four condensed r ings;  flourene- and phenanthrene-type condensed aromatic rings 
predominate; the nonaromatic par t  of the molecule consis ts  mostly of hydroaromatic 
rings; and there  are  few alkyl (mainly methyl) groups. 

recent years on bituminous coals warrants an  updating of model coal s t ructures .  
One of t h e  most important coal s t ruc tura l  propert ies ,  the carbon aromaticity has 
been determined direct ly  by sol id -s ta te  carbon-13 NMR spectroscopy using 1H-1% cross- 
polarization ( 5 , 6 )  and magic-angle spinning (7,8). The average s ize  of condensed 
aromatic strucTuFes in high-vol a t i  l e  bi tuminouscoal s has been estimated on the 
basis of investigations of coal extracts  ( 9 , s ) .  A new oxidative degradation 
technique has been developed to invest igate  the a l ipha t ic  s t ructures  in coal (11). 
Many additional new data have been forthcoming about a variety of subjects deaTTng 
with coal s t ructural  research, such as the dis t r ibut ion of oxygen in  bituminous 
coal among d i f fe ren t  functional groups, the characterization of heterocyclic 
compounds in coal extracts ,  and the detai led s t ructural  characterization o f  coal 
extracts  and coal liquefaction products. 

The research t h a t  has been carried out on the s t ructural  characterization of 
coal extracts  and coal hydrogenation products i s  of par t icular  in te res t .  A1 though 
the s t ructural  features of these products d i f f e r  in various degrees from those o f  
the parent coal, s t ructural  invest igat ions w i t h  such materials can be conducted 
with greater accuracy because t h e i r  so lubi l i ty  allows the application o f  a number 
of separation and analytical techniques that  cannot be used with coal. The s t ruc-  
tu ra l  characterization of these materials generally consis ts  of solvent and 
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Various aromatic and heterocyclic s t ructures  have been ident i -  

One of the 

they a l l  contain rela-  

The large amount of new structural  information t h a t  has been obtained i n  
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chromatographic f r a c t i o n a t i o n ,  f o l l owed  by u l t i m a t e  ana lys i s ,  h i g h - r e s o l u t i o n  
p r o t o n  and carbon-13 NMR spectrosocpy, mo lecu la r  weight, and phenol ic-OH measure- 
ments o f  t h e  f rac t i ons .  Two recen t  s t r u c t u r a l  s tud ies  o f  t h i s  t y p e  have been used 
f o r  t h e  d e r i v a t i o n  o f  model molecular  s t r u c t u r e s .  B a r t l e  e t  a l .  (lo) c a r r i e d  o u t  
t h e  s t r u c t u r a l  a n a l y s i s  o f  e x t r a c t s  obta ined f r o m  h i g h - v o l a t i l e  bituminous coal  by 
s u p e r c r i t i c a l - t o l u e n e  e x t r a c t i o n  a t  400 C. It was concluded t h a t  one of t he  
ex t rac ts ,  which represents  27% o f  t h e  coal ,  con ta ins  smal l  aromat ic  u n i t s  h e l d  
together  by methylene, heteroatom, and b iphenyl  l inkages.  
a v a i l a b l e  s i t e s  o f  t h e  aromat ic  ske le ton  a r e  occupied by a l k y l  and naphthenic 
groups. 
Solvent  Ref ined CoalProcess.  
f r a c t i o n s  ( " p o l a r  aromat ics")  c o n s i s t s  o f  a benzofuran r i n g  which has a phenyl and 
a naphthyl group as subs t i t uen ts .  
benzofuran, and condensed hydroaromatic r i n g s  i s  i nd i ca ted .  

The model coa l  molecule descr ibed i n  t h i s  paper i s  presented w i t h  t h e  f o l l o w -  
i n g  ob jec t i ves :  ( I )  t o  i n c o r p o r a t e  i n t o  t h e  model new s t r u c t u r a l  i n fo rma t ion  t h a t  
has become a v a i l a b l e  i n  r e c e n t  years,  (2 )  t o  d e r i v e  a d d i t i o n a l  i n p u t  da ta  f o r  t h e  
model molecule by means o f  a mathematical ana lys i s ,  and (3 )  t o  t e s t  t h e  model by 
comparing the exper imen ta l l y  observed behavior  o f  a h i g h - v o l a t i l e  bituminous coa l  
i n  a number o f  chemical r e a c t i o n s  w i t h  t h e  expected behavior  o f  t h e  model molecule 
i n  t h e  same react ions.  

Experimental I n p u t  Data 

nous coal was se lec ted  f o r  t h i s  s tudy because many bas i c  research data a r e  a v a i l a b l e  
i n  t h e  l i t e r a t u r e  f o r  coa ls  o f  t h i s  rank. 

I n p u t  data i nc luded  the  elemental composition; t he  a r o m a t i c i t y  o f  t h e  coal ,  the 
s t r u c t u r a l  f o r m u l a e o f t h e  aromat ic  cons t i t uen ts ,  and t h e  d i s t r i b u t i o n  o f  t h e  hetero-  
atoms among the  d i f f e r e n t  f u n c t i o n a l  groups. The elemental composit ion and t h e  gen- 
e r a l  formula o f  t h e  coal  a r e  shown i n  Table 1. The general formula was c a l c u l a t e d  
f o r  a u n i t  con ta in ing  100 carbon atoms, corresponding t o  a "molecular weight"  o f  
about 1450. 
t h i s  "molecule" i s  connected t o  o t h e r  p a r t s  o f  a l a r g e r  s t r u c t u r e  ( l inkages-P) .  

Approximatley 30% o f  t h e  

Farcas iu (12) i n v e s t i g a t e d  t h e  s t r u c t u r e  of  coa l  l i q u i d s  produced by t h e  
The proposed average s t r u c t u r e  o f  one of t he  major  

I n  o t h e r  f r a c t i o n s  t h e  presence o f  benzene, 

The composit ion o f  a v i t r a i n  concentrate from a t y p i c a l  h i g h - v o l a t i l e  b i t u m i -  

Th is  molecular  we igh t  i s ,  of  course, a r b i t r a r y ;  as i n d i c a t e d  i n  F igu re  1, 

TABLE 1 

USED I N  MODEL STRUCTURE STUDIES 
CHARACTERIZATION OF HIGH-VOLATILE BITUMINOUS COAL 

Elemental Composit ion 
(dmnf bas i s )  ( w t  %) (atom %) 

83.2 53.1 
5.5 42.0 
7.7 3.7 

N 1.1 0.6 

S ( w . 1  2.5 0.6 
To ta l  100.0 100.0 

General Formula (100 C bas i s ) :  

Carbon Aromat i c i t y :  fa = 0.70 

C100H790,NS 
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The value of the carbon aromaticity ( f a )  of coals of 82 to  83% C content has 
been measured by a number of d i f fe ren t  methods. 
f a  = 0.66 using infrared and high-resolution proton-NMR spectroscopic measurements 
made w i t h  a coal of 82.5% C content and w i t h  ex t rac ts  of the same coal. 
Heredy e t  a l .  (14,15), based on acid-catalyzed depolymerization of a high-volatile 
bituminous c o a l n r t h e  high-resolution proton-NMR spectra of the depolymerization 
products, gave f, = 0.65. 
extracts  using hlgh-resolution proton-mMR spectroscopy. 
sol id coal by Vanderhard and Retcofsky (2) using cross-polarization carbon-13 NMR 
spectroscopy gave f a  = 0.76. The average of these values ( fa  = 0.70) was used i n  
t h i s  work. 

Oryden (13) found a value of 

Work by 

Retcofsky (9 )  found fa  = 0.73 by investigating coal 
The investigation of a 

The aromatic s t ructures  used i n  the construction of the model molecule are  
shown i n  Figure 2. 
information. 
the aromatic part o f  tG st ruc ture  of high-volatile bituminous coal with C = 82.5% 
was less  than three. 
tha t  in the same type of coal the average number of condensed rings i n  the aromatic 
par t  o f  the  s t ructure  was about three. Naphthalene and phenanthrene were selected 
as specif ic  condensed aromatic s t ructures  for  use in the construction of the model 
molecule because these compounds were found frequently in coal ex t rac ts  (16).  
With regard t o  the select ion of spec i f ic  heterocyclic constituents, the findings 
of Kessler e t  a l .  (16) and Sternberg e t  a l .  (17) were used. 
t h a t  a sizeable f r a z i o n  of the organic s u l f u F i n  the coal is in benzothiophene- 
type s t ructures ,  and much of the  oxygen i s  in benzofuran- or dibenzofuran-type 
structures. 
aromatic s t ructures  i n  coal hydrogenation products. 

The following dis t r ibut ion was used f o r  the oxygen among the d i f fe ren t  
s t ructural  positions. Of the seven oxygen atoms in the model molecule, four were 
located i n  phenolic-OH groups on the basis of the work of Friedman e t  a l .  (18) .  
One oxygen atom was located in an aromatic e ther  linkage on the basis  of d a K  
published by Ignasiak and Gawlak (B), and one was located in a dibenzofuran 
s t ructure  a s  discussed before (16). 
cycl ic  a l iphat ic  e ther  s t ruc ture ,  

The f ive  constituent aromatic s t ructures  of the model molecule a re  inter-  
connected by f ive  bridges. 
mentioned in the previous paragraphs; the other four a r e  a l ipha t ic  hydrocarbon 
s t ructures .  

They were selected on the basis of the following experimental 
Oryden (13) estimated t h a t  the average number of condensed rings i n  

Retcofsky (z), a s  well a s  Heredy e t  a l .  (E,S), estimated 

I t  has been shown (16) 

Carbazole has been ident i f ied (c) a s  one of the nitrogen-containing 

I t  was assumed t h a t  one oxygen atom was i n  a 

One of the bridges i s  the aromatic e ther  linkage 

Mat hema ti ca 1 Analysis 

No independent experimental data were used t o  obtain the s t ructural  charac- 
t e r i s t i c s  of the nonaromatic par t  of the model molecule. 
derived from the general formula of the  model molecule and the s t ructural  formulae 
of the  aromatic constituents of the model molecule (Figure 2 )  u s i n g  a mathematical 
analysis. 
developing t h i s  analysis. 
detailed report. 

In essence, the analysis involves the construction of a matrix. The ver t ical  
columns l i s t  a se r ies  of aromatic H contents f o r  the aromatic par t  of the molecule 
(corresponding t o  d i f fe ren t  degrees of aromatic subs t i tu t ion) .  
l ines  l i s t  d i f fe ren t  types of a l i p h a t i c  and hydroaromatic subst i tuents  tha t  can be 
attached to the aromatic par t  of the model molecule (a l ipha t ic  chains, s ingle  cr 
condensed hydroaromatic rings - Figure 3) .  
content of the aromatic P a r t  of the model molecule and the s t ructural  configuration 
of t h e  nonaromatic par t  of the model molecule can be expressed in terms of the 

This information was 

A method applied by Whitehurst et  a l .  (20) was used a s  the basis for  
The complete analysis wTl be presented i n  a more 

The horizontal 

Both the  percentage of aromatic hydrogen 
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number of positions t h a t  can be subst i tuted i n  the aromatic and i n  the nonaromatic 
Parts of the model molecule, respectively. 
contents and a l ipha t ic  s t ruc tura l  types i n  the matrix, which can accept the same 
number of subst i tuents ,  ident i f ies  the percentage of aromatic hydrogen content of 
the model molecule a s  well a s  the a1 iphatic/hydroaromatic s t ructural  configuration. 

the i n p u t  data g iven  in Table 1 and Figures 2 and 3,  i t  i s  found that  the best 
match of aromatic and a l ipha t ic  subst i tut ions i s  obtained a t  an aromatic H content 
Of about 30%. Furthermore, the analysis  indicates  tha t  most o f  the  nonaromatic 
s t ructures  a re  composed o f  hydroaromatic rings of the types of Structures 4, 7, 
and 8 (Figure 3). 
these types were used to construct the nonaromatic par t  of the model molecule. 
The proposed s t ructure  of the model molecule i s  shown in Figure 1. The dis t r ibu-  
tion of carbon, hydrogen, and heteroatoms among d i f fe ren t  s t ructural  positions i n  
the model molecule i s  shown i n  Table 2. 

Matching those aromatic hydrogen 

When the procedure described i n  the previous paragraph i s  carried out  us ing  

On the basis of t h i s  analysis ,  hydroaromatic s t ructures  o f  

TABLE 2 
CHARACTERISTICS OF THE MODEL COAL MOLECULE 

Hydroaromatic Ring 
Other Alpha Phenolic 

Total Aromatic Alpha Beta A1 iphatic OH 
No. of 

Element Atoms No. % No. % No. % No. % No. % 

Hydrogen 79 23 29.1 2 1  26.6 20 25.3 11 13.9 4 5.1 
Carbon 100 70 70.0 13 13.0 12 12.0 5 5.0 - - 

Aromatic 
Ether Heterocyclic 

Phenolic 
OH 

No. % No. % No. % 

Oxygen 7 1 14.3 2 28.6 
1 100.0 Nitrogen 1 - -  
1 100.0 Sulfur 1 - -  

4 57.1 

- -  

Evaluation o f  Chemical Reactions 

I t  i s  of interest t o  compare the expected behavior of the model molecule in 
some of the chemical reactions which have been used t o  invest igate  bituminous coals 
with the experimentally observed behavior of high-volatile bituminous coals. 

are  i n  hydroaromatic s t ructures .  
evolve a s  hydrogen gas under the c a t a l y t i c  dehydrogenation conditions used by 
Reggel e t  a l .  (3). 
of 82.5 t o  84.0% C content was 23 t o  30 H atoms evolved per 100 carbon atoms. 

diamine was estimated by using experimental data obtained on the reduction of a 
variety o f  organic compounds by Reggel e t  a l .  (22). 
model molecule would take u p  24 H atoms. The experimentally obtained number for  
vi t ra in  concentrates of 82.5 t o  84.0% C contents was the addition of 21 t o  22 H 
atoms per 100 C atoms (g).  

A large fract ion of the  hydrogen atoms, 41 of the 79 i n  the model molecule, 

The experimentally obtained number f o r  v i t r a i n  concentrates 

Of these, 24 hydrogen atoms would be expected to  

The expected e f fec t  of reduction of the model molecule w i t h  lithium-ethylene- 

I t  was estimated tha t  the 
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The expected r e a c t i v i t y  o f  t h e  model molecule i n  phenol -BFj -cata lyzed depoly- 
The bonds on b o t h  s ides  o f  t h e  CH2-bridge would 

Furthermore, t h e  bond between t h e  

The y i e l d  o f  t h i s  depoly- 

mer i za t i on  can be eva lua ted  (a). 
break because they a r e  bonded t o  r e a c t i v e  aromat ic  s i t e s  on a phenanthrene and on 
a OH-activated phenanthrene r i n g ,  r e s p e c t i v e l y .  
OH-activated phenanthrene r i n g  and t h e  -CH2-CH-group o f  t h e  hydroaromatic r i n g  
would break. These i n t e r a c t i o n s  would re lease  and s o l u b i l i z e  t h e  phenanthro- 
thiophene-based fragment f rom t h e  r e s t  G f  t h e  molecule. 
mer i za t i on  product  nou ld  be 27%. Heredy e t  a l .  ob ta ined  a ne t  phenol -so lub le 
depolymerized product  y i e l d  o f  29% i n  a phenol-BF ca ta l yzed  depolymer izat ion 
experiment us ing  a coa l  o f  82.4% C content  (g,gjI 

The t reatment  o f  t h e  model molecule w i t h  a reagent  m i x t u r e  c o n s i s t i n g  o f  
t r i f l u o r o a c e t i c  ac id ,  hydrogen peroxide, and s u l f u r i c  a c i d  would g i v e  a m i x t u r e  o f  
ca rboxy l i c  ac ids  (11). The p r i n c i p a l  l ow  mo lecu la r  weight  products  would be 
a c e t i c  a c i d  and s u c i n i c  a c i d ,  formed i n  a r a t i o  o f  3 t o  8 on a hydrogen bas i s  
from t h e  c x i d a t i o n  o f  t h e  methy l  group and the  two -CH The ac tua l  
t e s t i n g  o f  h i g h - v o l a t i l e  b i tuminous c o a l s  by Deno e t  a?: (i) showed t h a t  these 
two ac ids  a r e  t h e  predominant products  w i t h  an a c e t i c  a c i d  t o  s u c c i n i c  a c i d  r a t i o  
o f  about  1 t o  3. 

nous coal  o f  83% C content ,  us ing  t h e  elemental composit ion, t h e  d i s t r i b u t i o n  o f  
heteroatoms among d i f f e r e n t  f u n c t i o n a l  groups, t h e  carbon a r o m a t i c i t y ,  and t h e  
formulae o f  t h e  c o n s t i t u e n t  aromat ic  s t r u c t u r e s  as i n p u t  data. 
method was used t o  c a l c u l a t e  t h e  va lue o f  t h e  hydrogen a r o m a t i c i t y  and t o  d e r i v e  
the  formulae o f  t h e  nonaromatic c o n s t i t u e n t s  o f  t h e  model s t r u c t u r e .  

of chemical reac t i ons  was compared wi th the  expected behavior  o f  t h e  model s t r u c t u r e  
i n  t h e  same reac t i ons .  The f o l l o w i n g  chemical r e a c t i o n s  o f  coal were examined: 
c a t a l y t i c  dehydrogenation i n  b o i l i n g  phenan th r id ine  us ing  pa l l ad ium c a t a l y s t ;  
reduc t i on  w i t h  l i th ium-ethy lenediamine;  ac id -ca ta l yzed  depo lymer i za t i on  us ing  
phenol-boron t r i f l u o r i d e  c a t a l y s t ;  and o x i d a t i o n  w i t h  a m i x t u r e  o f  t r i f l u o r o a c e t i c  
ac id ,  hydrogen peroxide, and s u l f u r i c  ac id .  Good agreement was found f o r  a l l  o f  
these reac t i ons  between t h e  exper imen ta l l y  ob ta ined  product  d i s t r i b u t i o n s  from 
v i t r a i n  and t h e  p roduc t  d i s t r i b u t i o n s  t h a t  would be expected under s i m i l a r  cond i t i ons  
from t h e  Kodel s t r u c t u r e .  

CH2 groups. 

I n  summary, a model chemical s t r u c t u r e  was d e r i v e d  f o r  a h i g h - v o l a t i l e  b i t u m i -  

A mathematical 

The exper imen ta l l y  observed behavior  o f  b i tuminous coal  v i t r a i n s  i n  a number 
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Figure 1. Proposed Structure  o f  the Model Coal Molecule 

GENERAL FORMULA OF AROMATIC PART: 
C,0H490NS 

Figure 2. Aromatic Constituents o f  the  Model Molecule 
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6. mcH2-cH3 

Figure 3 .  Basic Configurations of 
C6 A1 iphat ic  Structures 
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